
Chapter 7

A Design Method

Concepts:
. Signatures
. Interface design
. Abstract base classes

But, luckily, he kept his wits and his purple crayon.
—Crockett Johnson

THROUGHOUT THE REST of this book we consider a number of data structures–
first from an abstract viewpoint and then as more detailed implementations. In
the process of considering these implementations, we will use a simple design
method that focuses on the staged development of interfaces and abstract base
classes. Here, we outline the design method. In the first section we describe the
process. The remaining sections are dedicated to developing several examples.

7.1 The Interface-Based Approach

As we have seen in our discussion of abstract data types, the public aspect of
the data type—that part that users depend on—is almost entirely incorporated
in the interface. In Java the interface is a formal feature of the language. Inter-
faces allow the programmer of an abstract data type to specify the signatures of
each of the externally visible methods, as well as any constants that might be
associated with implementations.

The development and adherence to the interface is the most important part
of the development of an implementation. The process can be outlined as fol-
lows:

1. Design of the interface. The interface describes the common external fea-
tures of all implementations.

2. An abstract implementation. The abstract implementation describes the
common internal features of all implementations.

3. Extension of the abstract class. Each implementation suggests an indepen-
dent approach to writing code that extends the abstract implementation
and supports the required elements of the interface.
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7.1.1 Design of the Interface

The designer first considers, in as much detail as possible, an abstract data
structure’s various internal states. For example, if we are to consider a Vector

abstractly, we pull out a napkin, and draw an abstract Vector and we consider
the various effects that Vector operations might have on its structure. In our
napkin-as-design-tool strategy, we might find ourselves using ellipses to suggest
that we expect the Vector to be unbounded in size; we might use outward
arrows to suggest the effect of accessor methods or methods that remove values;
and we might blot out old Vector values in favor of new values when mutators
are used. The designer must develop, from these free-flowing abstract notions
of a structure, a collection of precise notions of how structures are accessed and
mutated. It is also important to understand which states of the abstract structure
are valid, and how the various methods ensure that the structure moves from
one valid state to the next.

Armed with this information, the designer develops the interface—the exter-
nal description of how users of the structure can interact with it. This consists
of

1. A list of constant (final static) values that help provide meaning to
values associated with the abstract structure. For example, any models of
an atom might provide constants for the masses of electrons, protons, and
neutrons. Each of these constants is declared within the atom interface
and becomes part of any implementation.

2. Implementation-independent publicly accessible methods that access or
modify data. For example, if we described an interface for a time-of-day
clock, methods for reading and setting the current time would be declared
part of the public interface. A method that made the clock “tick,” caus-
ing time to move forward, would not be declared as part of the interface
because it would not be a feature visible to the user. From the user’s stand-
point, the clock ticks on its own. How the clock ticks is not an abstract
feature of the clock.

3. If an interface appears to be a refinement of another interface, it is com-
mon practice to have the one extend the other. This is useful if the new
objects should be usable wherever the previously declared values are used.

Once the interface has been defined, it can be put to immediate use. Potential
users of the class can be asked to review it. In fact, application code can be
written to make use of the new interface. Later, if particular implementations
are developed, the application code can be put to use. It is important to remem-
ber, however, that the development of the application and the implementation
of the data structure may both proceed at the same time.
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7.1.2 Development of an Abstract Implementation

Once the interface has been outlined, it is useful for the designer to consider
those functions of the structure that are implementation independent. These
pieces are gathered together in a partial or abstract implementation of the in-
terface called an abstract base class. Since some parts of the interface may not
be implemented in the abstract base class—perhaps they require a commitment
to a particular implementation approach—it is necessary for the class to be de-
clared abstract. Once the abstract class is implemented, it may be used as a
basis for developing extensions that describe particular implementations.

Some structures may have some built-in redundancy in their public methods.
An interface supporting trigonometric calculations might, for example, have a
method tan which computes its result from sin and cos. No matter how sin

and cos are actually implemented, the tan method can be implemented in this
manner. On the other hand, if a tan function can be computed in a more di-
rect manner—one not dependent on sin and cos—a particular implementation
might override the method outlined in the abstract base class.

A similar approach is taken in Vector-like classes that implement a backward-
compatible setElementAt method based on the more recently added set method.
Such a method might appear in an abstract base class as

Vector

public void setElementAt(E obj, int index)

// pre: 0 <= index && index < size()

// post: element value is changed to obj

{

set(index,obj);

}

Because such code cannot be included in any interface that might describe a
Vector, we place the code in the abstract class.

Implementors of other abstract objects may find it useful to develop a com-
mon library of methods that support all implementations. These methods—
often declared privately—are only made available to the implementor of the
class. If they are utility methods (like sin and sqrt) that are not associated
with a particular object, we also declare them static.

Thus the abstract base class provides the basis for all implementations of
an interface. This includes implementation-independent code that need not be
rewritten for each implementation. Even if an abstract base class is empty, it is
useful to declare the class to facilitate the implementation of implementation-
independent development later in the life of the data structure. It is frequently
the case, for example, that code that appears in several implementations is re-
moved from the specific implementations and shared from the abstract base
class. When implementations are actually developed, they extend the associ-
ated abstract base class.
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7.1.3 Implementation

When the abstract base class is finished, it is then possible for one or more im-
plementations to be developed. Usually each of these implementations extends
the work that was started in the abstract base class. For example, a Fraction

interface might be implemented as the ratio of two values (as in the Ratio

class we saw in Chapter 1), or it might be implemented as a double. In the
latter case, the double is converted to an approximate ratio of two integers,
the numerator and denominator. In both cases, it might be useful to declare an
AbstractFraction class that includes a greatest common divisor (gcd) method.
Such a method would be declared protected and static.

7.2 Example: Development of Generators

As an example, we develop several implementations of an object that gener-
ates a sequence of values—an object we will call a generator. Such an object
might generate randomly selected values, or it might generate, incrementally, a
sequence of primes.

We imagine the interface would include the following methods:

Generator

public interface Generator

{

public void reset();

// post: the generator is reset to the beginning of the sequence;

// the current value can be immediately retrieved with get.

public int next();

// post: returns true iff more elements are to be generated.

public int get();

// post: returns the current value of the generator.

}

The Generator is constructed and the get method can be used to get its initial
value. When necessary, the next routine generates, one at a time, a sequence of
integer values. Each call to next returns the next value in the sequence, a value
that can be recalled using the get method. If necessary, the reset method can
be used to restart the sequence of generated values.

The next step is to generate an abstract base class that implements the inter-
face. For the AbstractGenerator we implement any of the methods that can
be implemented in a general manner. We choose, here, for example, to provide
a mechanism for the next method to save the current value:

Abstract-

Generator

abstract public class AbstractGenerator

implements Generator

{

protected int current; // the last value saved



7.2 Example: Development of Generators 153

public AbstractGenerator(int initial)

// post: initialize the current value to initial

{

current = initial;

}

public AbstractGenerator()

// post: initialize the current value to zero

{

this(0);

}

protected int set(Integer next)

// post: sets the current value to next, and extends the sequence

{

int result = current;

current = next;

return result;

}

public int get()

// post: returns the current value of the sequence

{

return current;

}

public void reset()

// post: resets the Generator (by default, does nothing)

{

}

}

The current variable keeps track of a single integer—ideally the last value gen-
erated. This value is the value returned by the get method. A hidden method—
set—allows any implementation to set the value of current. It is expected
that this is called by the next method of the particular implementation. By pro-
viding this code in the abstract base class, individual implementations needn’t
repeatedly reimplement this common code. By default, the reset method does
nothing. If a particular generator does not require a reset method, the default
method does nothing.

Here is a simple implementation of a Generator that generates a constant
value. The value is provided in the constructor:

Constant-

Generator

public class ConstantGenerator extends AbstractGenerator

{

public ConstantGenerator(int c)

// pre: c is the value to be generated.

// post: constructs a generator that returns a constant value
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{

set(c);

}

public int next()

// post: returns the constant value

{

return get();

}

}

The set method of the AbstractGenerator is called from the constructor, record-
ing the constant value to be returned. This effectively implements the get

method—that code was provided in the AbstractGenerator class. The next

method simply returns the value available from the get method.
Another implementation of a Generator returns a sequence of prime num-

bers. In this case, the constructor sets the current value of the generator to
2—the first prime. The next method searches for the next prime and returns
that value after it has been saved. Here, the private set and the public get

methods from the AbstractGenerator class help to develop the state of the
Generator:

PrimeGenerator

public class PrimeGenerator extends AbstractGenerator

{

public PrimeGenerator()

// post: construct a generator that delivers primes starting at 2.

{

reset();

}

public void reset()

// post: reset the generator to return primes starting at 2

{

set(2);

}

public int next()

// post: generate the next prime

{

int f,n = get();

do

{

if (n == 2) n = 3;

else n += 2;

// check the next value

for (f = 2; f*f <= n; f++)

{

if (0 ==(n % f)) break;
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}

} while (f*f <= n);

set(n);

return n;

}

}

Clearly, the reset method is responsible for restarting the sequence at 2. While
it would be possible for each Generator to keep track of its current value in its
own manner, placing that general code in the AbstractGenerator reduces the
overall cost of keeping track of this information for each of the many implemen-
tations.

Exercise 7.1 Implement a Generator that provides a stream of random integers.
After a call to reset, the random sequence is “rewound” to return the same se-
quence again. Different generators should probably generate different sequences.
(Hint: You may find it useful to use the setSeed method of java.util.Random.)

7.3 Example: Playing Cards

Many games involve the use of playing cards. Not all decks of cards are the
same. For example, a deck of bridge cards has four suits with thirteen cards in
each suit. There are no jokers. Poker has a similar deck of cards, but various
games include special joker or wild cards. A pinochle deck has 48 cards con-
sisting of two copies of 9, jack, queen, king, 10, and ace in each of four suits.
The ranking of cards places 10 between king and ace. A baccarat deck is as in
bridge, except that face cards are worth nothing. Cribbage uses a standard deck
of cards, with aces low.

While there are many differences among these card decks, there are some
common features. In each, cards have a suit and a face (e.g., ace, king, 5). Most
decks assign a value or rank to each of the cards. In many games it is desirable
to be able to compare the relative values of two cards. With these features in
mind, we can develop the following Card interface:

Card

public interface Card

{

public static final int ACE = 1;

public static final int JACK = 11;

public static final int QUEEN = 12;

public static final int KING = 13;

public static final int JOKER = 14;

public static final int CLUBS = 0;

public static final int DIAMONDS = 1;

public static final int HEARTS = 2;

public static final int SPADES = 3;

public int suit();
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// post: returns the suit of the card

public int face();

// post: returns the face of the card, e.g., ACE, 3, JACK

public boolean isWild();

// post: returns true iff this card is a wild card

public int value();

// post: return the point value of the card

public int compareTo(Object other);

// pre: other is valid Card

// post: returns int <,==,> 0 if this card is <,==,> other

public String toString();

// post: returns a printable version of this card

}

The card interface provides all the public methods that we need to have in our
card games, but it does not provide any hints at how the cards are implemented.
The interface also provides standard names for faces and suits that are passed
to and returned from the various card methods.

In the expectation that most card implementations are similar to a stan-
dard deck of cards, we provide an AbstractCard class that keeps track of an
integer—a card index—that may be changed with set or retrieved with get

(both are protected methods):

AbstractCard

import java.util.Random;

public abstract class AbstractCard implements Card

{

protected int cardIndex;

protected static Random gen = new Random();

public AbstractCard()

// post: constructs a random card in a standard deck

{

set(randomIndex(52));

}

protected static int randomIndex(int max)

// pre: max > 0

// post: returns a random number n, 0 <= n < max

{

return Math.abs(gen.nextInt()) % max;

}

protected void set(int index)

// post: this card has cardIndex index

{
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cardIndex = index;

}

protected int get()

// post: returns this card's card index

{

return cardIndex;

}

public int suit()

// post: returns the suit of the card

{

return cardIndex / 13;

}

public int face()

// post: returns the face of the card, e.g. ACE, 3, JACK

{

return (cardIndex % 13)+1;

}

public boolean isWild()

// post: returns true iff this card is a wild card

// (default is false)

{

return false;

}

public int value()

// post: return the point value of the card, Ace..King

{

return face();

}

public String toString()

// post: returns a printable version of this card

{

String cardName = "";

switch (face())

{

case ACE: cardName = "Ace"; break;

case JACK: cardName = "Jack"; break;

case QUEEN: cardName = "Queen"; break;

case KING: cardName = "King"; break;

default: cardName = cardName + face(); break;

}

switch (suit())

{

case HEARTS: cardName += " of Hearts"; break;

case DIAMONDS: cardName += " of Diamonds"; break;
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case CLUBS: cardName += " of Clubs"; break;

case SPADES: cardName += " of Spades"; break;

}

return cardName;

}

}

Our abstract base class also provides a protected random number generator that
returns values from 0 to max-1. We make use of this in the default constructor
for a standard deck; it picks a random card from the usual 52. The cards are
indexed from the ace of clubs through the king of spades. Thus, the face and
suit methods must use division and modulo operators to split the card index
into the two constituent parts. By default, the value method returns the face of
the card as its value. This is likely to be different for different implementations
of cards, as the face values of cards in different games vary considerably.

We also provide a standard toString method that allows us to easily print
out a card. We do not provide a compareTo method because there are complex-
ities with comparing cards that cannot be predicted at this stage. For example,
in bridge, suits play a predominant role in comparing cards. In baccarat they do
not.

Since a poker deck is very similar to our standard implementation, we find
the PokerCard implementation is very short. All that is important is that we
allow aces to have high values:

PokerCard

public class PokerCard extends AbstractCard

{

public PokerCard(int face, int suit)

// pre: face and suit have valid values

// post: constructs a card with the particular face value

{

set(suit*13+face-1);

}

public PokerCard()

// post: construct a random poker card.

{

// by default, calls the AbstractCard constructor

}

public int value()

// post: returns rank of card - aces are high

{

if (face() == ACE) return KING+1;

else return face();

}

public int compareTo(Object other)

// pre: other is valid PokerCard

// post: returns relationship between this card and other
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{

PokerCard that = (PokerCard)other;

return value()-that.value();

}

}

Exercise 7.2 Write the value and compareTo methods for a pair of cards where
suits play an important role. Aces are high, and assume that suits are ranked clubs
(low), diamonds, hearts, and spades (high). Assume that face values are only
considered if the suits are the same; otherwise ranking of cards depends on their
suits alone.

The implementation of a pinochle card is particularly difficult. We are inter-
ested in providing the standard interface for a pinochle card, but we are faced
with the fact that there are two copies each of the six cards 9, jack, queen, king,
10, and ace, in each of the four suits. Furthermore we assume that 10 has the
unusual ranking between king and ace. Here’s one approach:

PinochleCard

public class PinochleCard extends AbstractCard

{

// cardIndex face suit

// 0 9 clubs

// 1 9 clubs (duplicate)

// ...

// 10 ACE clubs

// 11 ACE clubs (duplicate)

// 12 9 diamonds

// 13 9 diamonds (duplicate)

// ...

// 47 ACE spades (duplicate)

public PinochleCard(int face, int suit, int copy)

// pre: face and suit have valid values

// post: constructs a card with the particular face value

{

if (face == ACE) face = KING+1;

set((suit*2+copy)*6+face-9);

}

public PinochleCard()

// post: construct a random Pinochle card.

{

set(randomIndex(48));

}

public int face()

// post: returns the face value of the card (9 thru Ace)

{

int result = get()%6 + 9;

if (result == 14) result = ACE;
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return result;

}

public int suit()

// post: returns the suit of the card (there are duplicates!)

{

// this is tricky; we divide by 12 cards (including duplicates)

// per suit, and again by 2 to remove the duplicate

return cardIndex / 12 / 2;

}

public int value()

// post: returns rank of card - aces are high

{

if (face() == ACE) return KING+2;

else if (face() == 10) return KING+1;

else return face();

}

public int compareTo(Object other)

// pre: other is valid PinochleCard

// post: returns relationship between this card and other

{

PinochleCard that = (PinochleCard)other;

return value()-that.value();

}

}

The difficulty is that there is more than one copy of a card. We choose to keep
track of the extra copy, in case we need to distinguish between them at some
point, but we treat duplicates the same in determining face value, suit, and
relative rankings.

7.4 Conclusions

Throughout the remainder of this book we will find it useful to approach each
type of data structure first in an abstract manner, and then provide the details of
various implementations. While each implementation tends to have a distinct
approach to supporting the abstract structure, many features are common to all
implementations. The basic interface, for example, is a shared concept of the
methods that are used to access the data structure. Other features—including
common private methods and shared utility methods—are provided in a basic
implementation called the abstract base class. This incomplete class serves as
a single point of extension for many implementations; the public and private
features of the abstract base class are shared (and possibly overridden) by the
varied approaches to solving the problem.


